679 research outputs found

    Kinetic energy of a trapped Fermi gas interacting with a Bose-Einstein condensate

    Full text link
    We study a confined mixture of bosons and fermions in the regime of quantal degeneracy, with particular attention to the effects of the interactions on the kinetic energy of the fermionic component. We are able to explore a wide region of system parameters by identifying two scaling variables which completely determine its state at low temperature. These are the ratio of the boson-fermion and boson-boson interaction strengths and the ratio of the radii of the two clouds. We find that the effect of the interactions can be sizeable for reasonable choices of the parameters and that its experimental study can be used to infer the sign of the boson-fermion scattering length. The interplay between interactions and thermal effects in the fermionic kinetic energy is also discussed.Comment: REVTEX, 8 pages, 6 figures included. Small corrections to text and figures, accepted for publication in EPJ

    Temperature-dependent density profiles of trapped boson-fermion mixtures

    Full text link
    We present a semiclassical three-fluid model for a Bose-condensed mixture of interacting Bose and Fermi gases confined in harmonic traps at finite temperature. The model is used to characterize the experimentally relevant behaviour of the equilibrium density profile of the fermions with varying composition and temperature across the onset of degeneracy, for coupling strengths relevant to a mixture of 39^{39}K and 40^{40}K atoms.Comment: 9 pages, 2 postscript figures, accepted for publication in Eur. Phys. Jour.

    Optical emission investigation of laser-produced MgB2 plume expanding in an Ar buffer gas

    Full text link
    Optical emission spectroscopy is used to study the dynamics of the plasma generated by pulsed-laser irradiation of a MgB2 target, both in vacuum and at different Ar buffer gas pressures. The analysis of the time-resolved emission of selected species shows that the Ar background gas strongly influences the plasma dynamics. Above a fixed pressure, plasma propagation into Ar leads to the formation of blast waves causing both a considerable increase of the fraction of excited Mg atoms and a simultaneous reduction of their kinetic flux energy. These results can be particularly useful for optimizing MgB2 thin film deposition processes.Comment: 11 pages,4 figures, Applied Physics Letters in pres

    Reshaping the Museum of Zoology in Rome by Visual Storytelling and Interactive Iconography

    Get PDF
    This article summarizes the concept of a new immersive and interactive setting for the Zoology Museum in Rome, Italy. The concept, co-designed with all the museum’s curators, is aimed at enhancing the experiential involvement of the visitors by visual storytelling and interactive iconography. Thanks to immersive and interactive technologies designed by Centro Studi Logos, developed by Logosnet and known as e-REALâ and MirrorMeä, zoological findings and memoirs come to life and interact directly with the visitors in order to deepen their understanding, visualize stories and live experiences, and interact with the founder of the Museum (Mr. Arrigoni degli Oddi) who is now a virtualized avatar, or digital human, able to talk with the visitors. All the interactions are powered through simple hand gestures and, in a few cases, vocal inputs that transform into recognized commands from multimedia systems

    Symmetric and asymmetric solitons in linearly coupled Bose-Einstein condensates trapped in optical lattices

    Full text link
    We study spontaneous symmetry breaking in a system of two parallel quasi-one-dimensional traps, equipped with optical lattices (OLs) and filled with a Bose-Einstein condensate (BEC). The cores are linearly coupled by tunneling. Analysis of the corresponding system of linearly coupled Gross-Pitaevskii equations (GPEs) reveals that spectral bandgaps of the single GPE split into subgaps. Symmetry breaking in two-component BEC solitons is studied in cases of the attractive (AA) and repulsive (RR) nonlinearity in both traps; the mixed situation, with repulsion in one trap and attraction in the other (RA), is considered too. In all the cases, stable asymmetric solitons are found, bifurcating from symmetric or antisymmetric ones (and destabilizing them), in the AA and RR systems, respectively. In either case, bi-stability is predicted, with a nonbifurcating stable branch, either antisymmetric or symmetric, coexisting with asymmetric ones. Solitons destabilized by the bifurcation tend to rearrange themselves into their stable asymmetric counterparts. The impact of a phase mismatch, between the OLs in the two cores is also studied. Also considered is a related model, for a binary BEC in a single-core trap with the OL, assuming that the two species (representing different spin states of the same atom) are coupled by linear interconversion. In that case, the symmetry-breaking bifurcations in the AA and RR models switch their character, if the inter-species nonlinear interaction becomes stronger than the intra-species nonlinearity.Comment: 21 pages + 24 figs, accepted to Phys. Rev.

    Static Properties of Trapped Bose-Fermi Mixed Condensate of Alkali Atoms

    Full text link
    Static properties of a bose-fermi mixture of trapped potassium atoms are studied in terms of coupled Gross-Pitaevskii and Thomas-Fermi equations for both repulsive and attractive bose-fermi interatomic potentials. Qualitative estimates are given for solutions of the coupled equations, and the parameter regions are obtained analytically for the boson-density profile change and for the boson/fermion phase separation. Especially, the parameter ratio RintR_{int} is found that discriminates the region of the large boson-profile change. These estimates are applied for numerical results for the potassium atoms and checked their consistency. It is suggested that a small fraction of fermions could be trapped without an external potential for the system with an attractive boson-fermion interaction.Comment: 8 pages,5 figure

    Subextensive singularity in the 2D ±J\pm J Ising spin glass

    Full text link
    The statistics of low energy states of the 2D Ising spin glass with +1 and -1 bonds are studied for L×LL \times L square lattices with L≤48L \le 48, and pp = 0.5, where pp is the fraction of negative bonds, using periodic and/or antiperiodic boundary conditions. The behavior of the density of states near the ground state energy is analyzed as a function of LL, in order to obtain the low temperature behavior of the model. For large finite LL there is a range of TT in which the heat capacity is proportional to T5.33±0.12T^{5.33 \pm 0.12}. The range of TT in which this behavior occurs scales slowly to T=0T = 0 as LL increases. Similar results are found for pp = 0.25. Our results indicate that this model probably obeys the ordinary hyperscaling relation dν=2−αd \nu = 2 - \alpha, even though Tc=0T_c = 0. The existence of the subextensive behavior is attributed to long-range correlations between zero-energy domain walls, and evidence of such correlations is presented.Comment: 13 pages, 7 figures; final version, to appear in J. Stat. Phy

    Pulsed laser deposition of SrTiO3/LaGaO3 and SrTiO3/LaAlO3: plasma plume effects

    Full text link
    Pulsed laser deposition of SrTiO3/LaGaO3 and SrTiO3/LaAlO3 interfaces has been analyzed with a focus on the kinetic energy of the ablated species. LaGaO3 and LaAlO3 plasma plumes were studied by fast photography and space-resolved optical emission spectroscopy. Reflection high energy electron diffraction was performed proving a layer-by-layer growth up to 10-1 mbar oxygen pressure. The role of the energetic plasma plume on the two-dimensional growth and the presence of interfacial defects at different oxygen growth pressure has been discussed in view of the conducting properties developing at such polar/non-polar interfaces

    Miscibility in a degenerate fermionic mixture induced by linear coupling

    Full text link
    We consider a one-dimensional mean-field-hydrodynamic model of a two-component degenerate Fermi gas in an external trap, each component representing a spin state of the same atom. We demonstrate that the interconversion between them (linear coupling), imposed by a resonant electromagnetic wave, transforms the immiscible binary gas into a miscible state, if the coupling constant, κ\kappa , exceeds a critical value, κcr \kappa _{\mathrm{cr}}. The effect is predicted in a variational approximation, and confirmed by numerical solutions. Unlike the recently studied model of a binary BEC with the linear coupling, the components in the immiscible phase of the binary fermion mixture never fill two separated domains with a wall between them, but rather form anti-locked (π\pi -phase-shifted) density waves. Another difference from the bosonic mixture is spontaneous breaking of symmetry between the two components in terms of numbers of atoms in them, N1N_{1} and N2N_{2}. The latter effect is characterized by the parameter ν≡(N1−N2)/(N1+N2)\nu \equiv (N_{1}-N_{2})/(N_{1}+N_{2}) (only N1+N2N_{1}+N_{2} is a conserved quantity), the onset of miscibility at κ≥κcr\kappa \geq \kappa_{\mathrm{cr}} meaning a transition to ν≡0\nu \equiv 0. At κ<κcr\kappa <\kappa_{\mathrm{cr}}, ν\nu features damped oscillations as a function of κ\kappa . We also briefly consider an asymmetric model, with a chemical-potential difference between the two components.Comment: 9 pages, 12 figures, PRA (in press

    Three-Fluid Description of the Sympathetic Cooling of a Boson-Fermion Mixture

    Full text link
    We present a model for sympathetic cooling of a mixture of fermionic and bosonic atomic gases in harmonic traps, based on a three-fluid description. The model confirms the experimentally observed cooling limit of about 0.2 T_F when only bosons are pumped. We propose sequential cooling -- first pumping of bosons and afterwards fermions -- as a way to obtain lower temperatures. For this scheme, our model predicts that temperatures less than 0.1 T_F can be reached.Comment: 9 pages, 6 figure
    • …
    corecore